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Abstract 
We examine the relationship between FPGA size and 
software speedup when an on-chip FPGA is used to 
implement critical software loops through 
hardware/software partitioning. We studied seven 
benchmark programs taken from Mediabench and 
Netbench. We profiled the programs on the SimpleScalar 
architecture, rewrote the critical loops in VHDL, 
synthesized and mapped those loops to a Xilinx FPGA, 
and calculated the gate requirements and performance 
speedups. We created several versions of each program, 
each version having successively more critical code 
moved to the FPGA, to see the relationship between size 
and speedup. Our results show that surprisingly few 
FPGA gates are needed to obtain most of the reasonably 
achievable speedup – an average speedup of 6x was 
obtained with only about 20,000 gates. 

Keywords 
Hardware/software partitioning, system-on-a-chip, 
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1. Introduction 
Single chip platforms incorporating a microprocessor 
and FPGA are growing in popularity. Several such 
platforms have become available commercially, 
including Atmel’s FPSLIC family [2], Triscend’s E5 and 
A7 [13], Xilinx’s Virtex II Pro [16], and Altera’s 
Excalibur line [1].  

Moving frequently executed pieces of code from 
software to an FPGA can increase the speed of the 
system [4][9][10][15]. These speedups can even translate 
to significant energy savings [5][12].  

Such speedups are typically due to the fact that a 
large set of software instructions, requiring perhaps tens 
of hundreds of clocks cycles, can often be executed in 

custom hardware using just a few clock cycles. The 
reduction in cycles comes primarily from executing 
instructions in parallel and from loop unrolling. Some 
cases allow for more speedup than others. For example, a 
function that does many bit operations dependant on one 
another could be sped up greatly. A function that has to 
access memory every other cycle has less potential to be 
sped up.  

In many programs, a few small sections of code may 
account for a very large portion of the total execution 
time. This situation is advantageous for partitioning, 
since we need only speed up those few critical sections to 
gain most of the reasonably available speedup. Most of 
the program can remain in software - moving everything 
to gates would require an FPGA with unreasonable size 
and power requirements for most applications. 

This paper examines the relationship between FPGA 
size and software speedup for several benchmark 
software applications selected from the Mediabench [6] 
and Netbench [8] benchmark suites. We show that 
relatively few gates are required to obtain most of the 
reasonably achievable speedup. 

2. Hardware/Software Partitioning Method 
We considered a straightforward approach to 
hardware/software partitioning, in which critical 
software loops are moved to an on-chip FPGA. Such an 
approach can be readily automated, and in fact several 
prototype and commercial tools, like Synopys’ Nimble 
Compiler attempt [7] and Proceler [11], perform such 
partitioning.  We point out that approaches that actually 
rewrite the algorithm for hardware execution will result 
in much greater speedups while requiring much more 
hardware. Although we actually consider both critical 
loop and critical subroutines, we use the term “loops” 
throughout the paper for simplicity. 



Our target system-on-a-chip architecture is shown in 
Figure 1, based on the Triscend E5 architecture. When a 
partitioned section of code is encountered, the 
microprocessor enables the FPGA. The FPGA then 
fetches the needed data from memory across the 32-bit 
bus, performs a computation, writes back to memory 
once completed, and indicates completion to the 
processor.  

We compiled each benchmark to a SimpleScalar [3] 
binary. We then ran SimpleScalar’s sim-cache to 
generate a trace file, and objdump to convert the binary 
to human-readable assembly. We recorded the number of 
cycles in software as cycles_s. 

We created multiple hardware/software versions of 
some benchmarks, each version successively requiring 
more hardware gates. For each version, we computed 
cycles as cycles_hs. We computed speedup as cycles_s / 
cycles_hs. We assumed the microprocessor and FPGA 
used the same clock frequency, as is the case in 
Triscend’s E5 and A7 devices [13]. We assumed the 
microprocessor had a cycles per instruction (CPI) of 1.5, 
which we observed to be a typical CPI when running a 
microprocessor simulator. 

The hardware/software versions were created as 
follows: First, to detect critical loops, we used a tool 
called LOOAN (Loop Analysis) [14], which takes the 
output of objdump and the trace file, and determines the 
portions of code that consume the most CPU time. To 
map loops to hardware, we rewrote the critical sections 
of code in VHDL, synthesized, and then mapped to a 
Xilinx xcv100e FPGA using Xilinx’s ISE Webpack [16]. 
This tool directly reported the number of gates and cycle 
information  for a design. 

For memory accesses, we assumed that the FPGA 
could access any location in memory in the same time 
required by the microprocessor - as is the case with 
Triscend’s devices. Since the memory locations of 
variables were pre-known in the benchmarks, we hard 
coded those addresses into the FPGA. 

In converting the commonly executed loops to 
VHDL, we performed loop unrolling wherever possible, 
subject to the limitation that the FPGA could be clocked 
at a minimum of 40 MHz - so in some cases we could not 
unroll completely. 

3. FPGA Size and Speedup 
3.1 Experiments 
Table 1 summarizes the benchmarks and our 
hardware/software partitioning results. The Cycles 
column displays the total number of software cycles the 
benchmarks required without any partitioning. # is the 
number we’ve assigned to the loop, for reference later. 
Critical Section lists the function in which the critical 
loop was found. Lines reports the number of lines in C 
code of the critical loop. Execution time lists the 
percentage of execution time in software that was spent 
in the critical loop. Cumulative Speedup shows the 
speedup we observed after moving the critical loops to 
hardware. Ideal Speedup reports the best possible case 
for speedup, obtained if all critical loops in hardware 
were reduced to zero time. Cumulative Gates displays the 
number of gates used by the FPGA to implement the 
critical loops in hardware. Due to time constraints, we 
did not always move multiple loops to hardware. Only if 
the execution time of subsequent loops looked promising 
for speedup did we implemented them. We’ll now 
summarize each benchmark briefly. 

G721 is an audio format that is used for encoding 
voice. Here we found one loop that consumed 44.5% of 
execution and another that consumed 10.1% of 
execution. The first loop, inside the quan function, was a 
short for loop that searched through an array. The second 
loop, update, was a longer for loop that did some bit 
operations. 

ADPCM, an algorithm used for speech compression, 
was a unique case because we discovered that a single 
loop was consuming 99.9% of execution time. We sped 
this loop up, allowing us to obtain a speedup of 27 with 
only 14,000 gates. 

Pegwit is a program used for public key encryption. 
Here we found two loops that each consumed about 35% 
of execution time. In addition, we found two other loops 
consumed about 4% and 3% of execution time 
respectively. 4% and 3% do not look like promising 
loops to move to hardware, but once the two 35% loops 
were moved to hardware, the two smaller loops 
represented a significant portion of remaining execution 
time. 

DH is another public key encryption application. This 
benchmark has three similar functions consuming the    
most execution time. The NN_DigitMult function 
performed bit multiplication on 32-bit integers. The 
NN_SubDigitMult function performed bit subtraction, 
and the NN_AddDigitMult did shifts and adds on several 
integers. These functions were easy to speed up in 
hardware. 

Figure 1: System-on-a-chip architecture. 
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MD5 is a checksum algorithm used on network     
packets. The most critical section of the MD5 benchmark 
was the MD5_transform function. This was a very long 
function, however, and took 90,000 gates to implement 
in hardware. For this reason, we present the partition 
with that function in hardware last in the graphs and 
tables, after two other loops that have a better speedup to 
gate ratio.  

In TL, a benchmark that does table lookups, there was 
a single for loop that consumed 50.9% of execution. This 
loop took eight cycles per iteration in software, and was 
reduced to only one in hardware. 

URL is a program that does URL packet switching. 
This benchmark had a single loop that consumed 80% of 
execution time. This for loop took 16 cycles per iteration 
in software, but was reduced to a single cycle in 
hardware. 

Figure 2 shows the speedup of all seven benchmarks 
as critical sections are moved to the FPGA. The 
horizontal axis shows the number of FPGA gates 
required by the critical loops in hardware, while the 
vertical axis shows the  cumulative speedup. 

Table 1: Speedup and FPGA size for critical loops. 

Benchm ark Cycles # Critical Section Lines Execution % Cum . Speedup Ideal Speedup Cum . Gates
G721 838,230,001 1 quan 3 44.5% 1.8 1.8 1,307

838,230,001 2 update 12 10.1% 2.2 2.2 5,811
838,230,001 3 predictor_zero 2 4.3% N/A N/A N/A

ADPCM 32,894,094 1 coder 43 99.9% 27.2 1175.5 14,132
32,894,094 2 m ain 10 3.6E-04 N/A N/A N/A
32,894,094 3 read N/A 9.3E-05 N/A N/A N/A

Pegwit 42,752,919 1 gfAddMul 5 35.4% 1.5 1.6 4,301
42,752,919 2 gfMultiply 6 35.4% 3.0 3.4 13,419
42,752,919 3 gfReduce 5 4.2% 3.4 4.0 15,678
42,752,919 4 gfAdd 3 2.8% 3.7 4.5 18,150

DH 1,793,032,156 1 NN_DigitMult 16 40.4% 1.6 1.7 15,308
1,793,032,156 2 NN_SubDigitMult 10 17.9% 2.3 2.4 20,792
1,793,032,156 3 NN_AddDigitMult 10 16.9% 3.7 4.0 21,383

MD5 5,374,033 1 MD5_m em set 2 13.4% 1.1 1.2 2,036
5,374,033 2 Decode 3 11.0% 1.3 1.3 2,228
5,374,033 3 MD5_Trans form 71 32.3% 2.1 2.3 90,074

TL 57,412,470 1 rn_addm ask 2 50.9% 1.9 2.0 5,478
57,412,470 2 rn_search 7 4.4% N/A N/A N/A
57,412,470 3 _wordcopy_fwd_alligned N/A 4.0% N/A N/A N/A

URL 27,353,017 1 calculate_bm_table 2 80.0% 4.3 5.0 2,929
27,353,017 2 calculate_bm_table 3 4.0% N/A N/A N/A
27,353,017 3 find_lcs 5 3.8% N/A N/A N/A

 

Figure 2: The relationship between FPGA size and speedup for the examined benchmarks, obtained through hardware/software partitioning. 
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3.2 Discussion 
The first observation we might make is that good 
speedup can be obtained with a relatively small amount 
of FPGA. Figure 3 shows the average speedups obtained 
for a given size of FPGA. We see that with only 20,000 
gates, we obtain an average speedup of 6.0; 25,000 gates 
yields a speedup of 6.3. Furthermore, we see in Figure 2 
that for the adpcm benchmark, a very good speedup of 
27.2 is obtained, with less than 15,000 gates.  

Because the speedup for adpcm is much higher than 
the other examples, we show the average speedups versus 
FPGA size in Figure 4, this time excluding the 
benchmarks with the highest and lowest speedups. We 
still see good speedups of 2.7x with 20,000 gates, and 
3.1x with 25,000 gates. 

A second observation we might make from the data 
in Table 1 and Figure 2  is that most speedup is obtained 
by moving the first few critical loops to FPGA - moving 
additional loops yields little additional speedup 
improvement. To see this trend more clearly, we 
continued the plot of Figure 2 for the top ten loops of 
each benchmark, assuming the remaining loops could be 
ideally sped up, meaning they could be implemented to 
execute in hardware in zero time. The results are shown 
in Figure 5. The vertical axis shows the cumulative ideal 
speedup as loops are moved to hardware. Shadowed 
points represent actual data, and non-shadowed points 
are ideal data. We can indeed see a leveling off effect. 
The biggest jump in speedup occurs within the first few 
loops. After that, subsequent loops tend to increase the 

speedup at a slower rate. Keep in mind that actual 
speedups for the latter loops would be even less – the 
figure shows ideal speedups for those latter loops. The 
implications of this observation are good for 
hardware/software partitioning - by moving just the most 
critical loops, we gain most of the possible speedup. 

Table 2 lists the ideal speedups that would be 
obtained if every critical loop could be implemented in 
hardware in zero time. We see that even in the 
completely idea situation, the first few loops give most of 
the speedup.  

4. Conclusion 
Partitioning critical software loops onto an on-chip 
FPGA yields impressive software speedups of 6.3x using 
a modestly sized FPGA of about 25,000 gates in the 
Mediabench and Netbench examples we tested. Most of 
the readily available speedup can be achieved within this 
25,000 gate threshold. The implication of the speedup 
data for platform designers is that including even a 
modest amount of FPGA can yield good software 
improvements. As feature sizes continue to scale down, 
adding a 40,000 gate equivalent FPGA onto a 
microprocessor chip may become less and less 
significant. Furthermore, the implication for embedded 
system designers is that performing a straightforward 
hardware/software partitioning may be well worth the 
effort. 
 

 

Figure 3: Average speedup for different FPGA sizes. 
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Table 2: Completely ideal speedup as loops are moved to hardware. 

Benchmark
1 2 3 4 5 6 7 8 9 10

G721 1.80 2.44 3.24 3.76 4.26 4.82 5.12 5.38 5.66 5.87
ADPCM 854.40 1229.39 1388.79 1594.01 1699.84 1806.98 1912.74 1994.41 2067.18 2127.34
Pegwit 1.55 3.42 3.94 4.42 4.97 5.43 5.99 6.58 7.18 7.88
DH 1.68 2.40 4.03 5.58 6.41 7.25 8.32 9.00 9.80 10.69
MD5 1.48 1.84 2.31 2.44 2.57 2.67 2.76 2.85 2.90 2.95
TL 2.04 2.24 2.46 2.68 2.95 3.26 3.58 3.96 4.41 4.97
URL 5.00 6.25 8.18 9.91 10.32 10.76 11.23 11.72 12.21 12.74

Ideal Cumulative Speedup with Subsequent Loops

 

Figure 4: Average speedup for different FPGA sizes, excluding 
the best and worst of our benchmarks. 
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Figure 5: Actual speedups (shadowed) followed by ideal speedups as loops are moved to hardware. 
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